Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 520
1.
Plant Biotechnol J ; 2024 May 07.
Article En | MEDLINE | ID: mdl-38715250

MicroRNA169 (miR169) has been implicated in multi-stress regulation in annual species such as Arabidopsis, maize and rice. However, there is a lack of experimental functional and mechanistic studies of miR169 in plants, especially in perennial species, and its impact on plant growth and development remains unexplored. Creeping bentgrass (Agrostis stolonifera L.) is a C3 cool-season perennial turfgrass of significant environmental and economic importance. In this study, we generated both miR169 overexpression and knockdown transgenic creeping bentgrass lines. We found that miR169 acts as a positive regulator in abiotic stress responses but is negatively associated with plant growth and development, playing multiple critical roles in the growth and environmental adaptation of creeping bentgrass. These roles include differentiated spatial hormone accumulation patterns associated with growth and stress accommodation, elevated antioxidant activity that alleviates oxidative damage induced by stress, ion-channelling membrane components for maintaining homeostasis under saline conditions, and potential cross-talks with stress-regulating transcription factors such as AsHsfA and AsWRKYs. Our results unravel the role of miR169 in modulating plant development and stress responses in perennial grass species. This underlines the potential of manipulating miR169 to generate crop cultivars with desirable traits to meet diverse agricultural demands.

2.
MedComm (2020) ; 5(5): e553, 2024 May.
Article En | MEDLINE | ID: mdl-38737469

The generation of chimeric antigen receptor-modified natural killer (CAR-NK) cells using induced pluripotent stem cells (iPSCs) has emerged as one of the paradigms for manufacturing off-the-shelf universal immunotherapy. However, there are still some challenges in enhancing the potency, safety, and multiple actions of CAR-NK cells. Here, iPSCs were site-specifically integrated at the ribosomal DNA (rDNA) locus with interleukin 24 (IL24) and CD19-specific chimeric antigen receptor (CAR19), and successfully differentiated into iPSC-derived NK (iNK) cells, followed by expansion using magnetic beads in vitro. Compared with the CAR19-iNK cells, IL24 armored CAR19-iNK (CAR19-IL24-iNK) cells showed higher cytotoxic capacity and amplification ability in vitro and inhibited tumor progression more effectively with better survival in a B-cell acute lymphoblastic leukaemia (B-ALL) (Nalm-6 (Luc1))-bearing mouse model. Interestingly, RNA-sequencing analysis showed that IL24 may enhance iNK cell function through nuclear factor kappa B (NFκB) pathway-related genes while exerting a direct effect on tumor cells. This study proved the feasibility and potential of combining IL24 with CAR-iNK cell therapy, suggesting a novel and promising off-the-shelf immunotherapy strategy.

3.
Biochem Pharmacol ; 224: 116217, 2024 Apr 17.
Article En | MEDLINE | ID: mdl-38641306

The Hippo pathway is a key regulator of tissue growth, organ size, and tumorigenesis. Activating the Hippo pathway by gene editing or pharmaceutical intervention has been proven to be a new therapeutic strategy for treatment of the Hippo pathway-dependent cancers. To now, a number of compounds that directly target the downstream effector proteins of Hippo pathway, including YAP and TEADs, have been disclosed, but very few Hippo pathway activators are reported. Here, we discovered a new class of Hippo pathway activator, YL-602, which inhibited CTGF expression in cells irrespective of cell density and the presence of serum. Mechanistically, YL-602 activates the Hippo pathway via MST1/2, which is different from known activators of Hippo pathway. In vitro, YL-602 significantly induced tumor cell apoptosis and inhibited colony formation of tumor cells. In vivo, oral administration of YL-602 substantially suppressed the growth of cancer cells by activation of Hippo pathway. Overall, YL-602 could be a promising lead compound, and deserves further investigation for its mechanism of action and therapeutic applications.

4.
BMC Genomics ; 25(1): 333, 2024 Apr 03.
Article En | MEDLINE | ID: mdl-38570739

BACKGROUND: The closed poultry houses integrated with a longitudinal water curtain cooling system (LWCCS) are widely used in modern poultry production. This study showed the variations in environmental conditions in closed houses integrated with a longitudinal water curtain cooling system. We evaluated the influence of different environmental conditions on duck growth performance and the transcriptome changes of immune organs, including the bursa of Fabricius and the spleen. RESULT: This study investigated the slaughter indicators and immune organ transcriptomes of 52-day-old Cherry Valley ducks by analyzing the LWCC at different locations (water curtain end, middle position, and fan cooling end). The results showed that the cooling effect of the LWCCS was more evident from 10:00 a.m. -14:00. And from the water curtain end to the fan cooling end, the hourly average temperature differently decreased by 0.310℃, 0.450℃, 0.480℃, 0.520℃, and 0.410℃, respectively (P < 0.05). The daily and hourly average relative humidity decreased from the water curtain end to the fan cooling end, dropping by 7.500% and 8.200%, respectively (P < 0.01). We also observed differences in production performance, such as dressing weight, half-eviscerated weight, skin fat rate, and percentage of abdominal fat (P < 0.01), which may have been caused by environmental conditions. RNA-sequencing (RNA-seq) revealed 211 and 279 differentially expressed genes (DEGs) in the ducks' bursa of Fabricius and spleen compared between the water curtain end and fan cooling end, respectively. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of the two organs showed the DEGs were mainly enriched in cytokine-cytokine receptor interaction, integral component of membrane, Retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs) signaling pathway, etc. Our results implied that full-closed poultry houses integrated with LWCCS could potentially alter micro-environments (water curtain vs. fan cooling), resulting in ducks experiencing various stressful situations that eventually affect their immunity and production performance. CONCLUSION: In this study, our results indicated that uneven distributions of longitudinal environmental factors caused by LWCCS would affect the dressed weight, breast muscle weight, skin fat rate, and other product performance. Moreover, the expression of immune-related genes in the spleen and bursa of ducks could be affected by the LWCCS. This provides a new reference to optimize the use of LWCCS in conjunction with close duck houses in practical production.


Ducks , Transcriptome , Animals , Ducks/genetics , Ducks/metabolism , Signal Transduction , Cytokines/genetics , Gene Expression Profiling
5.
Oncol Res ; 32(4): 753-768, 2024.
Article En | MEDLINE | ID: mdl-38560563

Multiple myeloma (MM) is a hematologic malignancy notorious for its high relapse rate and development of drug resistance, in which cell adhesion-mediated drug resistance plays a critical role. This study integrated four RNA sequencing datasets (CoMMpass, GSE136337, GSE9782, and GSE2658) and focused on analyzing 1706 adhesion-related genes. Rigorous univariate Cox regression analysis identified 18 key prognosis-related genes, including KIF14, TROAP, FLNA, MSN, LGALS1, PECAM1, and ALCAM, which demonstrated the strongest associations with poor overall survival (OS) in MM patients. To comprehensively evaluate the impact of cell adhesion on MM prognosis, an adhesion-related risk score (ARRS) model was constructed using Lasso Cox regression analysis. The ARRS model emerged as an independent prognostic factor for predicting OS. Furthermore, our findings revealed that a heightened cell adhesion effect correlated with tumor resistance to DNA-damaging drugs, protein kinase inhibitors, and drugs targeting the PI3K/Akt/mTOR signaling pathway. Nevertheless, we identified promising drug candidates, such as tirofiban, pirenzepine, erlotinib, and bosutinib, which exhibit potential in reversing this resistance. In vitro, experiments employing NCIH929, RPMI8226, and AMO1 cell lines confirmed that MM cell lines with high ARRS exhibited poor sensitivity to the aforementioned candidate drugs. By employing siRNA-mediated knockdown of the key ARRS model gene KIF14, we observed suppressed proliferation of NCIH929 cells, along with decreased adhesion to BMSCs and fibronectin. This study presents compelling evidence establishing cell adhesion as a significant prognostic factor in MM. Additionally, potential molecular mechanisms underlying adhesion-related resistance are proposed, along with viable strategies to overcome such resistance. These findings provide a solid scientific foundation for facilitating clinically stratified treatment of MM.


Multiple Myeloma , Humans , Multiple Myeloma/drug therapy , Multiple Myeloma/genetics , Multiple Myeloma/pathology , Cell Adhesion/genetics , Phosphatidylinositol 3-Kinases/metabolism , Prognosis , Drug Resistance, Neoplasm/genetics , Cell Line, Tumor , Neoplasm Recurrence, Local
6.
CNS Drugs ; 2024 Apr 04.
Article En | MEDLINE | ID: mdl-38573471

BACKGROUND: Percutaneous endoscopic transforaminal discectomy (PETD) is an effective method for treating lumbar disc herniation, and is typically performed under local anesthesia. However, inadequate analgesia during the procedure remains a concern, prompting the search for a medication that can provide optimal pain control with minimal impact on the respiratory and circulatory systems. OBJECTIVES: The aim of this study was to observe the effects of different doses of esketamine combined with dexmedetomidine on reducing visual analog scale (VAS) scores during surgical interventions. METHODS: One hundred two patients who underwent PETD were randomly divided into a control group (group C: normal saline + dexmedetomidine), an E1 group (0.1 mg kg-1 esketamine + dexmedetomidine), and an E2 group (0.2 mg kg-1 esketamine + dexmedetomidine). The primary outcome was the maximum visual analogue scale (VAS) (score: 0 = no pain and 10 = worst pain) at six time points. The secondary outcomes included the Assessment of Alertness/Sedation Scale (OAA/S) score and mean arterial pressure (BP), heart rate (HR), respiratory rate (RR), and oxygen saturation (SpO2) at 11 time points. The incidence of adverse reactions during and 24 h after the operation and patient satisfaction with the anesthesia were also recorded. RESULTS: Compared with those in group C, the VAS scores of patients in groups E1 and E2 were lower at T6, T7, and T9 (P < 0.05). From T4 to T10, the OAA/S scores of the E1 and E2 groups were both lower than those of group C (P < 0.05), and at the T4-T6 time points, the OAA/S score of the E2 group was lower than that of group E1 (P < 0.05). At T4 and T5, the HR and BP of patients in groups E1 and E2 were greater than those in group C (P < 0.05). Compared with those in group C, the incidences of intraoperative illusion, floating sensation, postoperative dizziness, and hyperalgesia in groups E1 and E2 were significantly greater (P < 0.01). There was no significant difference in patient RR, SpO2, or postoperative satisfaction with anesthesia among the three groups (P > 0.05). CONCLUSION: The combination of esketamine and dexmedetomidine can reduce VAS scores during certain stages of this type of surgery; it has minimal impact on respiration and circulation. However, this approach is associated with increased incidences of postoperative dizziness and psychiatric side effects, which may also affect patients' compliance with surgical instructions from medical staff. Patient satisfaction was not greater with dexmedetomidine combined with esketamine than with dexmedetomidine alone. TRIAL REGISTRATION: http://www.chictr.org.cn . Identifier: ChiCTR2300068206. Date of registration: 10 February 2023.

7.
Environ Res ; 252(Pt 2): 118829, 2024 Apr 04.
Article En | MEDLINE | ID: mdl-38582424

Municipal wastewater treatment processes consume a significant amount of energy and generate substantial carbon emissions. However, organic matters existing in municipal wastewater hold the potential as a valuable carbon source. Activated sludge has the potential to capture and recover the organic matters, thereby enriching carbon sources and facilitating subsequent sludge anaerobic digestion as well as in line with the concept of sustainable development. Based on above, this study investigated the enrichment and recovery characteristics and mechanisms of activated sludge adsorption on carbon sources in municipal wastewater, while optimizing the recovery conditions. The results indicated that insoluble organic matters, as well as a fraction of dissolved organic matters, can be effective recovered within approximately 40 min. Specifically, 74.1% of insoluble organic matters and 25.8% of soluble organic matters were successfully captured by the activated sludge, resulting in a 5.0% increase in sludge organic matter content. Moreover, activated sludge demonstrated remarkable recovery of particulate organic matters across various particle sizes, particularly larger particles (>5 µm) with high protein content. Notably, the dissolved biodegradable organics such as tryptophan and tyrosine protein-like substances according to 3D-EEM and lipids, proteins/amino sugars, and carbohydrates according to FT-ICR MS can be effectively recovered. Finally, the study revealed that the recovery of organic matters from the wastewater by activated sludge followed the pseudo-second-order kinetics model, with surface binding, hydrogen bonding and interparticle diffusion in sludge flocs as the primary adsorption mechanisms. This approach had abroad application prospects for improving the profitability of wastewater treatment plants.

8.
Small ; : e2311890, 2024 Apr 05.
Article En | MEDLINE | ID: mdl-38577919

Ulcerative colitis (UC), an immune-mediated chronic inflammatory disease, drastically impacts patients' quality of life and increases their risk of colorectal cancer worldwide. However, effective oral targeted delivery and retention of drugs in colonic lesions are still great challenges in the treatment of UC. Coacervate microdroplets, formed by liquid-liquid phase separation, are recently explored in drug delivery as the simplicity in fabrication, spontaneous enrichment on small molecules and biological macromolecules, and high drug loading capacity. Herein, in this study, a biocompatible diethylaminoethyl-dextran hydrochloride/sodium polyphenylene sulfonate coacervates, coated with eudragit S100 to improve the stability and colon targeting ability, named EU-Coac, is developed. Emodin, an active ingredient in traditional Chinese herbs proven to alleviate UC symptoms, is loaded in EU-Coac (EMO@EU-Coac) showing good stability in gastric acid and pepsin and pH-responsive release behavior. After oral administration, EMO@EU-Coac can effectively target and retain in the colon, displaying good therapeutic effects on UC treatment through attenuating inflammation and oxidative stress response, repairing colonic epithelia, as well as regulating intestinal flora balance. In short, this study provides a novel and facile coacervate microdroplet delivery system for UC treatment.

9.
J Agric Food Chem ; 72(18): 10487-10496, 2024 May 08.
Article En | MEDLINE | ID: mdl-38683727

The current study aimed to improve the acid resistance and thermostability of Bacillus velezensis α-amylase through site-directed mutagenesis, with a specific focus on its applicability to the feed industry. Four mutation sites, P546E, H572D, A614E, and K622E, were designed in the C domain of α-amylase, and three mutants, Mut1 (E), Mut2 (ED), and Mut3 (EDEE), were produced. The results showed that the specific activity of Mut3 was 50 U/mg higher than the original α-amylase (Ori) after incubation at 40 °C for 4 h. Compared to Ori, the acid resistance of Mut3 showed a twofold increase in specific activity at pH 2.0. Moreover, the results of preliminary feed hydrolysis were compared between Ori and Mut3 by designing three factors, three levels of orthogonal experiment for enzymatic hydrolysis time, feed quantity, and amount of amylase. It was observed that the enzymatic hydrolysis time and feed quantity showed an extremely significant difference (p < 0.01) in Mut3 compared to Ori. However, the amount of enzyme showed significant (p < 0.05) improvement in the enzymatic hydrolysis in Mut3 as compared to Ori. The study identified Mut3 as a promising candidate for the application of α-amylase in the feed industry.


Bacillus , Bacterial Proteins , Enzyme Stability , Mutagenesis, Site-Directed , alpha-Amylases , Bacillus/enzymology , Bacillus/genetics , Bacillus/chemistry , alpha-Amylases/genetics , alpha-Amylases/chemistry , alpha-Amylases/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Hydrogen-Ion Concentration , Hydrolysis , Animal Feed/analysis , Kinetics , Hot Temperature , Acids/metabolism , Acids/chemistry , Acids/pharmacology , Temperature
10.
Dalton Trans ; 53(13): 6063-6069, 2024 Mar 26.
Article En | MEDLINE | ID: mdl-38477327

A new layered metal sulfide, namely (C6H15N3)1.3(NH4)1.5H1.5In3SnS8 (1, C6H15N3 = N-(2-aminoethyl) piperazine), has been solvothermally synthesized and characterized. Compound 1 crystallizes in the monoclinic space group C2/c. Its structure features a two-dimensional layer of {In3SnS8}n3n- with the (4,4) topology net, which is formed by interlinking supertetrahedral T2 clusters as secondary building units. Band structure calculations revealed that 1 had a band gap of 2.7 eV. The photoelectric response of 1 showed steady and reversible on/off cycles with an "on" state of 121.13 nA cm-2. Moreover, the activation of 1 by replacing the sluggish organic cations with harder K+ ions endowed the material with improved adsorption performances for Sr2+ ions from aqueous solutions.

11.
Sleep Med ; 116: 129-137, 2024 Apr.
Article En | MEDLINE | ID: mdl-38460418

IMPORTANCE: Pediatric obstructive sleep apnea (OSA) is a common disease that can have significant negative impacts on a child's health and development. A comprehensive evaluation of different pharmacologic interventions for the treatment of OSA in children is still lacking. OBJECTIVE: This study aims to conduct a comprehensive systematic review and network meta-analysis of pharmacological interventions for the management of obstructive sleep apnea in pediatric population. DATA SOURCES: PubMed, Web of Science, Embase, The Cochrane Library, and CNKI were searched from 1950 to November 2022 for pediatric OSA. STUDY SELECTION: Multiple reviewers included Randomized controlled trials (RCTs) concerning drugs on OSA in children. DATA EXTRACTION AND SYNTHESIS: Multiple observers followed the guidance of the PRISMA NMA statement for data extraction and evaluation. Bayesian network meta-analyses(fixed-effect model) were performed to compare the weighted mean difference (WMD), logarithmic odds ratios (log OR), and the surface under the cumulative ranking curves (SUCRA) of the included pharmacological interventions. Our protocol was registered in PROSPERO website (CRD42022377839). MAIN OUTCOME(S) AND MEASURE(S): The primary outcomes were improvements in the apnea/hypopnea index (AHI), while secondary outcomes included adverse events and the lowest arterial oxygen saturation (SaO2). RESULTS: 17 RCTs with a total of 1367 children with OSA aged 2-14 years that met the inclusion criteria were eventually included in our systematic review and network meta-analysis. Ten drugs were finally included in the study. The results revealed that Mometasone + Montelukast (WMD-4.74[95%CrIs -7.50 to -2.11], Budesonide (-3.45[-6.86 to -0.15], and Montelukast(-3.41[-5.45 to -1.39] exhibited significantly superior therapeutic effects compared to the placebo concerning apnea hypopnea index (AHI) value with 95%CrIs excluding no effect. Moreover, Mometasone + Montelukast achieved exceptionally high SUCRA values for both AHI (85.0 %) and SaO2 (91.0 %). CONCLUSIONS AND RELEVANCE: The combination of mometasone furoate nasal spray and oral montelukast sodium exhibits the highest probability of being the most effective intervention. Further research is needed to investigate the long-term efficacy and safety profiles of these interventions in pediatric patients with OSA.


Acetates , Cyclopropanes , Quinolines , Sleep Apnea, Obstructive , Sulfides , Child , Humans , Network Meta-Analysis , Acetates/therapeutic use , Sleep Apnea, Obstructive/drug therapy , Mometasone Furoate/therapeutic use
12.
Inflamm Res ; 73(4): 619-640, 2024 Apr.
Article En | MEDLINE | ID: mdl-38433131

BACKGROUND: Patients with coronavirus disease 2019 (COVID-19) were vulnerable to venous thromboembolism (VTE), which further increases the risk of unfavorable outcomes. However, neither genetic correlations nor shared genes underlying COVID-19 and VTE are well understood. OBJECTIVE: This study aimed to characterize genetic correlations and common pathogenic mechanisms between COVID-19 and VTE. METHODS: We used linkage disequilibrium score (LDSC) regression and Mendelian Randomization (MR) analysis to investigate the genetic associations and causal effects between COVID-19 and VTE, respectively. Then, the COVID-19 and VTE-related datasets were obtained from the Gene Expression Omnibus (GEO) database and analyzed by bioinformatics and systems biology approaches with R software, including weighted gene co-expression network analysis (WGCNA), enrichment analysis, and single-cell transcriptome sequencing analysis. The miRNA-genes and transcription factor (TF)-genes interaction networks were conducted by NetworkAnalyst. We performed the secondary analysis of the ATAC-seq and Chip-seq datasets to address the epigenetic-regulating relationship of the shared genes. RESULTS: This study demonstrated positive correlations between VTE and COVID-19 by LDSC and bidirectional MR analysis. A total of 26 potential shared genes were discovered from the COVID-19 dataset (GSE196822) and the VTE dataset (GSE19151), with 19 genes showing positive associations and 7 genes exhibiting negative associations with these diseases. After incorporating two additional datasets, GSE164805 (COVID-19) and GSE48000 (VTE), two hub genes TP53I3 and SLPI were identified and showed up-regulation and diagnostic capabilities in both illnesses. Furthermore, this study illustrated the landscapes of immune processes in COVID-19 and VTE, revealing the downregulation in effector memory CD8+ T cells and activated B cells. The single-cell sequencing analysis suggested that the hub genes were predominantly expressed in the monocytes of COVID-19 patients at high levels. Additionally, we identified common regulators of hub genes, including five miRNAs (miR-1-3p, miR-203a-3p, miR-210-3p, miR-603, and miR-124-3p) and one transcription factor (RELA). CONCLUSIONS: Collectively, our results highlighted the significant correlations between COVID-19 and VTE and pinpointed TP53I3 and SLPI as hub genes that potentially link the severity of both conditions. The hub genes and their common regulators might present an opportunity for the simultaneous treatment of these two diseases.


COVID-19 , MicroRNAs , Venous Thromboembolism , Humans , Transcriptome , Venous Thromboembolism/epidemiology , Venous Thromboembolism/genetics , Genome-Wide Association Study , COVID-19/genetics , Transcription Factors
13.
Brief Bioinform ; 25(2)2024 Jan 22.
Article En | MEDLINE | ID: mdl-38487850

The screening of enzymes for catalyzing specific substrate-product pairs is often constrained in the realms of metabolic engineering and synthetic biology. Existing tools based on substrate and reaction similarity predominantly rely on prior knowledge, demonstrating limited extrapolative capabilities and an inability to incorporate custom candidate-enzyme libraries. Addressing these limitations, we have developed the Substrate-product Pair-based Enzyme Promiscuity Prediction (SPEPP) model. This innovative approach utilizes transfer learning and transformer architecture to predict enzyme promiscuity, thereby elucidating the intricate interplay between enzymes and substrate-product pairs. SPEPP exhibited robust predictive ability, eliminating the need for prior knowledge of reactions and allowing users to define their own candidate-enzyme libraries. It can be seamlessly integrated into various applications, including metabolic engineering, de novo pathway design, and hazardous material degradation. To better assist metabolic engineers in designing and refining biochemical pathways, particularly those without programming skills, we also designed EnzyPick, an easy-to-use web server for enzyme screening based on SPEPP. EnzyPick is accessible at http://www.biosynther.com/enzypick/.

14.
J Adv Res ; 2024 Mar 12.
Article En | MEDLINE | ID: mdl-38479571

INTRODUCTION: Chemotherapy-induced peripheral neuropathy (CIPN) is a common complication that affects an increasing number of cancer survivors. However, the current treatment options for CIPN are limited. Paclitaxel (PTX) is a widely used chemotherapeutic drug that induces senescence in cancer cells. While previous studies have demonstrated that Sonic hedgehog (Shh) can counteract cellular dysfunction during aging, its role in CIPN remains unknown. OBJECTIVES: Herein, the aim of this study was to investigate whether Shh activation could inhibits neuronal/glial senescence and alleviates CIPN. METHODS: We treated ND7/23 neuronal cells and RSC96 Schwann cells with two selective Shh activators (purmorphamine [PUR] and smoothened agonist [SAG]) in the presence of PTX. Additionally, we utilized a CIPN mouse model induced by PTX injection. To assess cellular senescence, we performed a senescence-associated ß-galactosidase (SA-ß-gal) assay, measured reactive oxygen species (ROS) levels, and examined the expression of P16, P21, and γH2AX. To understand the underlying mechanisms, we conducted ubiquitin assays, LC-MS/MS, H&E staining, and assessed protein expression through Western blotting and immunofluorescence staining. RESULTS: In vitro, we observed that Shh activation significantly alleviated the senescence-related decline in multiple functions included SA-ß-gal activity, expression of P16 and P21, cell viability, and ROS accumulation in DRG sensory neurons and Schwann cells after PTX exposure. Furthermore, our in vivo experiments demonstrated that Shh activation significantly reduced axonal degeneration, demyelination, and improved nerve conduction. Mechanistically, we discovered that PTX reduced the protein level of SP1, which was ubiquitinated by the E3 ligase TRIM25 at the lysine 694 (K694), leading to increased CXCL13 expression, and we found that Shh activation inhibited PTX-induced neuronal/glial senescence and CIPN through the TRIM25-SP1-CXCL13 axis. CONCLUSION: These findings provide evidence for the role of PTX-induced senescence in DRG sensory neurons and Schwann cells, suggesting that Shh could be a potential therapeutic target for CIPN.

15.
Nat Commun ; 15(1): 2341, 2024 Mar 15.
Article En | MEDLINE | ID: mdl-38491065

Nanothermometers enable the detection of temperature changes at the microscopic scale, which is crucial for elucidating biological mechanisms and guiding treatment strategies. However, temperature monitoring of micron-scale structures in vivo using luminescent nanothermometers remains challenging, primarily due to the severe scattering effect of biological tissue that compromises the imaging resolution. Herein, a lanthanide luminescence nanothermometer with a working wavelength beyond 1500 nm is developed to achieve high-resolution temperature imaging in vivo. The energy transfer between lanthanide ions (Er3+ and Yb3+) and H2O molecules, called the environment quenching assisted downshifting process, is utilized to establish temperature-sensitive emissions at 1550 and 980 nm. Using an optimized thin active shell doped with Yb3+ ions, the nanothermometer's thermal sensitivity and the 1550 nm emission intensity are enhanced by modulating the environment quenching assisted downshifting process. Consequently, minimally invasive temperature imaging of the cerebrovascular system in mice with an imaging resolution of nearly 200 µm is achieved using the nanothermometer. This work points to a method for high-resolution temperature imaging of micron-level structures in vivo, potentially giving insights into research in temperature sensing, disease diagnosis, and treatment development.


Lanthanoid Series Elements , Animals , Mice , Lanthanoid Series Elements/chemistry , Temperature , Luminescence , Diagnostic Imaging , Ions
16.
Eur Neurol ; 2024 Mar 02.
Article En | MEDLINE | ID: mdl-38432194

Introduction:This study aimed to comprehensively evaluate the therapeutic efficacy of cerebellar repetitive transcranial magnetic stimulation (rTMS) in the rehabilitation of post-stroke dysphagia (PSD). Methods: Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, we systematically searched PubMed, Cochrane Library, Embase, and Web of Science to identify relevant randomized controlled trials (RCTs) investigating the application of cerebellar rTMS in the treatment of PSD. Inclusion and exclusion criteria were rigorously applied during the screening process, and pertinent characteristics of the included RCTs were meticulously extracted. The I2 statistic was employed to assess heterogeneity, and meta-analysis was conducted using Stata 17 software. The Cochrane Risk of Bias 2 tool and Pedro scale were utilized to evaluate bias risk and literature quality. Results: Our analysis encompassed a total of 5 RCTs involving 673 patients with dysphagia who met the inclusion criteria. The findings indicated a significant positive impact of cerebellar rTMS when combined with traditional swallowing exercises on PSD, demonstrating superior efficacy compared to conventional swallowing exercises in isolation. Furthermore, the study revealed no statistically significant differences based on stimulation site (unilateral vs. bilateral cerebellum), stimulation mode (rTMS vs. intermittent theta-burst stimulation [iTBS]), and stimulation frequency (5Hz vs. 10Hz).

18.
Article En | MEDLINE | ID: mdl-38480652
19.
Mater Horiz ; 2024 Mar 11.
Article En | MEDLINE | ID: mdl-38465967

In vivo transmembrane-voltage detection reflected the electrophysiological activities of the biological system, which is crucial for the diagnosis of neuronal disease. Traditional implanted electrodes can only monitor limited regions and induce relatively large tissue damage. Despite emerging monitoring methods based on optical imaging have access to signal recording in a larger area, the recording wavelength of less than 1000 nm seriously weakens the detection depth and resolution in vivo. Herein, a Förster resonance energy transfer (FRET)-based nano-indicator, NaYbF4:Er@NaYF4@Cy7.5@DPPC (Cy7.5-ErNP) with emission in the near-infrared IIb biological window (NIR-IIb, 1500-1700 nm) is developed for transmembrane-voltage detection. Cy7.5 dye is found to be voltage-sensitive and is employed as the energy donor for the energy transfer to the lanthanide nanoparticle, NaYbF4:Er@NaYF4 (ErNP), which works as the acceptor to achieve electrophysiological signal responsive NIR-IIb luminescence. Benefiting from the high penetration and low scattering of NIR-IIb luminescence, the Cy7.5-ErNP enables both the visualization of action potential in vitro and monitoring of Mesial Temporal lobe epilepsy (mTLE) disease in vivo. This work presents a concept for leveraging the lanthanide luminescent nanoprobes to visualize electrophysiological activity in vivo, which facilitates the development of an optical nano-indicator for the diagnosis of neurological disorders.

20.
Environ Sci Pollut Res Int ; 31(16): 23482-23504, 2024 Apr.
Article En | MEDLINE | ID: mdl-38483721

The contribution of urban non-point source (NPS) pollution to surface water pollution has gradually increased, analyzing the sources of urban NPS pollution is of great significance for precisely controlling surface water pollution. A bibliometric analysis of relevant research literature from 2000 to 2021 reveals that the main methods used in the source analysis research of urban NPS pollution include the emission inventory approach, entry-exit mass balance approach, principal component analysis (PCA), positive matrix factorization (PMF) model, etc. These methods are primarily applied in three aspects: source analysis of rainfall-runoff pollution, source analysis of wet weather flow (WWF) pollution in combined sewers, and analysis of the contribution of urban NPS to the surface water pollution load. The application of source analysis methods in urban NPS pollution research has demonstrated an evolution from qualitative to quantitative, and further towards precise quantification. This progression has transitioned from predominantly relying on on-site monitoring to incorporating model simulations and employing mathematical statistical analyses for traceability. This paper reviews the principles, advantages, disadvantages, and the scope of application of these methods. It also aims to address existing problems and analyze potential future development directions, providing valuable references for subsequent related research.


Non-Point Source Pollution , Water Pollutants, Chemical , Non-Point Source Pollution/analysis , Environmental Monitoring/methods , Water Pollution/analysis , Weather , China , Water Pollutants, Chemical/analysis
...